Presentation 3 – Nancy Klimas

Immune abnormalities associated with CFS in the general population

Nancy Klimas, MD

Miami VA Medical Center
University of Miami Miller School of Medicine
CFS and GWI Research Center

GWI and CFS : Comparisons

- Both defined by symptoms which overlap
- Significant overlap in research findings
- Study of GW veterans showed a 16 fold increase risk of CFS, but no other increased risk over controls
- Issues surrounding the study of a multisymptom illness with a multisystem pathogenesis are the same

Gulf War Illness	Chronic Fatigue Syndrome***
Fatigue	Disabling fatigue
Depression	Exercise induced relapse
Arthralgia	Arthralgia
Myalgia	Myalgia
Sleep disturbance	Non restorative sleep
Cognitive dysfunction	Cognitive dysfunction
Headache	Headache
Diarrhea, intermittent	Sore throat
Wheezing,	Tender lymph nodes
Cough,	
Chest pain,	
Shortness of breath*	
Weight loss, low grade fever**	

Model of GWI or CFS Pathogenesis

Genetic Predisposition

Triggering event / infection

Mediators (Immune, endocrine, neuroendocrine, psychosocial)

Health Outcome/Persistence

Cytokines Patterns

- Type 1 promote cell mediated immunity, antiviral responses. INF-g, IL-2, IL-12
- Type 2 promote antibody production. IL-4, IL-5,IL-10
- Pro-inflammatory mediate inflammatory responses. TNF-a, IL-1, IL-6

Cytokines and the Immune System

- Lymphocytes and associated cells function through a messenger system using cytokines.
- Cytokines deliver message from cell to cell, promoting cell growth, enhancing cell functions, turning off cell functions, and promoting cell death (apoptosis).

Cytokines in CFS

- Th 2 imbalance
- Proinflammatory cytokine expression
- Activation of inflammatory cascade correlates with severity of cognitive complaints, pain

Cytokine Changes Over Time

- Patterns of cytokine expression change with illness severity
- TNF-a receptor expression increases with flares of illness (Patarca et al, 1996)
- Type 2 expression increasingly evident as illness persists for years

Severity of Illness correlates with pro-inflammatory cytokine levels

Hurricane Andrew study

Increase in cognitive difficulties directly correlated with IL1 increase

Post hurricane relapse resulted in cytokine increases and relapse that persisted greater than 6 months

Immune abnormalities in CFS

Immune Activation

Functional defects

- DR, CD26 expression
- TH2 cytokine shift
- Proinflammatory cytokines expression TNF-a, IL-1, IL6

NK Cell dysfunction

CD8 abnormalities

perforins, granzymes Macrophage abnormalities

Antibody production

Conventional Flow Cytometry:

66% of Lymphocytes expressed CD11a

Quantitative Flow Cytometry:

Lymphocytes expressed an average of 50,000 rMolecules CD11a / lymphocyte

Immune abnormalities in CFS

Immune Activation

- DR, CD26 expression
- TH2 cytokine shift
- Proinflammatory cytokines expression TNF-a, IL-1, IL6

Functional defects

NK Cell dysfunction
CD8 abnormalities
↓ perforins, granzymes
Macrophage abnormalities
Antibody production
Cell receptor expression

Gulf War Illness

- Immune Activation
- Higher T and B cell numbers
- Reduced NK, T and B cell function in vitro
- Elevations in immune complexes
- Autoantibody titers directed against MBP and striated or smooth muscle
- Elevated titers to EBV, HSV, HHV6
- Cytokine shift, IL10 over expression increasing INF gamma/IL10 with increasing vaccine exposure
- 2 groups, TH1 or TH2; TH2 cytokine shift with pro-inflammatory cytokines TNF-a, correlating with cognitive impairment
- Voldeni A Environ Heelth Perspect. 2004 Jun;112(8):840-5 Scowers A. J Clin Imminol. 2004 Jun;24(1):65-73. Ferguson and, Classaday Behav Neuro 2002 10(2):93 Peakman 2004 U Ölin Immohol 24(1):60 Natelson Neuroimminomodulation 10(2):93

Immune Mediator interactions

Immune neuropeptide interactions

- Immune Autonomic
- Immune HPA
- Immune Sleep

Neuro immune connections: receptors in WBCs

- epinephrine, norepinephrine
- seritonin
- substance P (neurogenic inflammation)
- VIP
- somatostatin
- B endorphin
- acetyl choline

Endocrine immune interactions

- Cortisol decreases inflammation through down regulation of immune activation, therefore low cortisol in CFS could play a role in chronic immune activation
- GH and thyroid impact on cell metabolism
- Autonomic impact on lymphocyte function
- models: stress, depression

Stress Response and Immune Function

- Short term "fight or flight"
- Long term immune dysfunction, illness
- "stress diathesis model" developmental implications, endocrine impact on brain vulnerability (Nemeroff, Plotsky)
- Recent proteomics data from the CDC group showing mutations in cortisol regulatory proteins

Depression and immune function and the HPA axis

- Decreases T cell function, NK cell function
- Blunted GH, TRF
- Increased CRF, ACTH, cortisol (as opposed to Demitrack and others finding in CFS)
- Enlarged adrenal mass, pituitary (as opposed to Dinan's findings in CFS)
- When a CFS patient develops depression, what are the neuro-endocrine, immune implications?

Sleep

- Circadian Sleep Wake neuroendocrine and immune functions in CFS (Modolfsky)
- altered diurnal patterns in cortisol, prolactin
- altered diurnal patterns of NK cell function
- alpha wave intrusion on sleep EEG
- studies associating pro-inflammatory cytokines directly with sleep abnormalities

Conclusion

- Immune abnormalities include chronic immune activation and cellular functional defects
- CFS as a model for illness caused by neuro - endocrine - immune interactions
- Result Health outcome, termed CFS cognitive, fatigue, sleep, pain
- Significant implications to GWI research