Presentation 3 - Dane Cook

Pain sensitivity in Gulf veterans with medically unexplained musculoskeletal pain

(DVA # 561-00215)

Dane B. Cook, PhD Health Science Specialist WRIISC East Orange VAMC

The Problem

- Unexplained muscle pain is a serious problem for many Gulf veterans (GVs)
 - 4th most frequently reported symptom
 - Reported twice as frequently in GVs than non-GVs (Kang et al., 2000)
 - Serious adverse consequences on the veteran's personal and professional lives (Kang et al., 2000)

The Problem

- Numerous studies have been conducted describing the problem
- Little research aimed at determining the cause
 - There is a need for research aimed at understanding the causes of unexplained pain in ${\rm GVs}$

Previous Research

- · Civilians with Fibromy algia:
 - More sensitive to experimental pain
 - (Cook et al., 2004; Kosek et al., 1996; Lautenbacher et al., 1994)
 - Lack normal inhibition of pain
 - (Kosek, Hansson, 1997; Lautenbacher, Rollman, 1997; Staud et al., 2003b)
 - Exaggerated brain responses to sensory stimuli
 - (Cook et al., 2004; Gracely et al., 2002)
 - Enhanced pain during exercise and increased pain sensitivity following exercise
 - · (Mengshoel et al., 1995; Vierck, Jr. et al., 2001)

Purpose

- · Comprehensively assess pain:
 - Look at different dimensions of pain (intensity & affective)
 - Look at experimental and naturally occurring pain
 - · Natural muscle pain, heat, pressure
 - Examine pain pre and post exercise
- Test potential mechanism:
 - immune system and pain (in progress)

Hypotheses

- GVs with medically unexplained muscle pain will:
 - Be more sensitive to painful stimuli pre and post exercise compared to healthy GVs
 - Have increased sensitivity to painful stimuli following exercise
 - Show a positive relationship between the immune system and pain (in progress)

Method

- N = 34 participants
 - n= 14 GVs with unexplained muscle pain
 - Pain in muscle and joints (more than one body quadrant)
 - > 3 months
 - Intense severity
 - n= 20 healthy GVs without pain
- Testing to occur on 2 separate days
 - Maximal exercise and pain testing
 - Submaximal exercise testing, pain testing and blood sampling

Method

- · Experimental Procedures:
 - Psychophysical pain assessment
 - Exercise @ 70% of peak oxygen consumption for 30 minutes followed by 5 minute active recovery
 - Psychophysical pain assessment

Method

- · Psychophysical Pain Assessment:
 - Heat pain thresholds thenar eminence non-dominant hand
 - Pressure pain thresholds second digit of dominant index and middle fingers
 - Supra-threshold pressure pain ratings
 - Supra-threshold heat pain rating (volar forearm)
 - Descriptor Differential Scales

Method

- · Descriptor Differential Scales
 - Based on psychophysics of cross-modality matching
 - Assess both intensity and affective pain dimensions
 - Several descriptors presented in random fashion
 - Ratings across a 21-point continuum
 - Similar to ratio scaling procedures (curve estimation)
 - Provides a measure of internal consistency

Descriptor Differential Scales	
I	
Unpleasant	
A Distressing	
Intolerable	

Results			
	Sirk GVs (n=14)	Healthy GVs (n=20)	
Age (yrs)	39.0 ± 7.1	40.4 ± 7.9	
Height (cm)	176.5 ± 8.3	168.4 ± 28	
Weight (kg)	96.0 ± 24.7	90.4 ± 13.9	
HR (b min ⁻¹)	74.0 ± 12.0	65.D ± 8.D	
SBP (mmHg)	117A±9.1	117.6 ± 10.6	
DBP (mmHg)	74.8 ± 6.7	77.5 ± 6.8	
Peak VO ₂ (ml.kg.min ⁻¹)	28.7 ± 7.5	321 ±8.2	
Submax VO ₂ (mHkg.min ⁻¹)	17.8 ± 4.4	219±53	
% peak VO ₂	63.D±0.D6	68.0 ± 0.03	
HPT (°C) Pre Ex	43.7 ± 4.2	44.2 ± 3.2	
HPT (°C) Post Ex	44.2 ± 3.8	45.0 ± 2.7	
PPT (sec) Pre Ex	31.0 ± 31.8	46.0 ± 40.1	
PPT (sec) Post Ex	38.8 ± 44.5	49.5 ± 37.3	

Discussion of preliminary findings

- GVs with medically unexplained musculoskeletal pain:
 - Are more sensitive to experimental pain stimuli than healthy GVs
 - Describe experimental pain stimuli as more intense and more unpleasant following 30 minutes of moderately intense submaximal exercise
 - Surprisingly, healthy GVs did not exhibit an exercise-induced analgesic response

To be determined

- What is the relationship between pro-inflammatory cytokines and pain sensitivity in GVs with medically unexplained muscle pain?
- What is the relationship between naturally occurring muscle pain during exercise and pain sensitivity post exercise?
- What are the spinal and supraspinal mechanisms underlying pain sensitivity and painful symptoms in GVs with medically unexplained muscle pain?