Presentation 5 – Jim O'Callaghan

Biological Mechanisms Potentially Associated with GWI: Neuroinflammation/Cytokine Activation in Response to Toxic Exposures

James P. O'Callaghan, Ph.D.

Molecular Neurotoxicology Laboratory
Centers for Disease Control and Prevention-NIOSH

Outline

- GWI & Neuroinflammation: links/definitions
- · Neuroimmune vs. Immune-neuro
 - "Hostage Brain" (McEwen)
 - Autonomic nervous system (Tracey)
- · Glia as targets/mediators/modulators
 - Role of TNF-α
- Modulation of "inflammatory" signaling as therapy

ODC

NOSH

Definitions/Links

- Neuroinflammation: hard to define
 - Synthesis/release of proinflammatory mediators (cytokines/chemokines)
 - Monocytes/Neurotrophils/Macrophages in the periphery/microglia in the CNS
- · Links to GWI symptoms????
 - Chronic fatigue
 - Neurocognitive effects/depression
 - Chemical sensitivity
 - PTSD-like symptoms
 - Pain
 - Persistence after initiating event ("memory")
- · Answer: yes...implicates cytokines and glia
 - altered cytokine profiles already reported in GW vets

| Insult | Inflammatory response | Cellular response | | Trauma, Stroke, | ↑ TNF-α, IL-1β | ↑ IL-6 | | Inflammatory response | NF-κB | ↑ IL-6 | | Trauma, Stroke, | ↑ TNF-α, IL-1β | ↑ IL-6 | | Other Cytokines/Chemokines | ↑ Tissue | | damage | ↑ Tissue | ↑ Tissue | | CDC

Cytokine Theory of Disease

- Immune and Nervous System Communicate Via Cytokine Signals
- Cytokines are "Proinflammatory" in nature (but some antiinflammatory)
- Dysregulated Cytokine Signaling (usually viewed as an increase) leads to debilitating immune related disease
 - Rheumatoid arthritis as extreme example
 - Depression as a potentially more subtle example (sickness behavior)
- Regulation and termination of cytokine signaling is mediated via HPA
 - Glucocorticioids suppress cytokines (dinically and experimentally)
 - Dexamethasone suppression test used to test HPA axis

Cytokine Theory of Disease and GWI

- · Is there a GWI cytokine "phenotype"?
- There Are Some Supporting Data:
 - Elevated IL-2, IL-10, TNF-α and IFN-γ (Th1 phenotype)
 - Th2 phenotype not prevalent (glucocorticoid responsive)
- Is it PTSD?
 - No, not associated with elevated serum IL-6

Cytokine Theory of Disease and GWI

- Data Gaps:
 - Complete serum cytokine profiles
 - Glucocorticoid Responsiveness (Dexamethasone Suppression Test)

Cytokine/Chemokine Blockers as Therapeutics

- Original Hypothesis: One disease, one ("bad") cell, one cytokine
- 2. Reality: many cells, many cytokines, many therapeutic targets

Cytokine/Chemokines, Glia and Neurotoxicity

Science 308: 778-781, 205

Indices of Neurotoxicity

- · Generic:
 - Cell loss-NOT seen in our dosing models Gliosis (GFAP assay/isolectin staining) Silver degeneration/Fluoro-Jade staining
- Dopaminergic (When combined with above):

Dopamine

Tyrosine hydroxylase (levels, immunohisto)

Tumor Necrosis Factor-a

- Proinflammatory Cytokine in the Periphery
- Effects Mediated through 2 receptors
- · Role in CNS unknown
- Enhanced Expression in Brain Linked To:
 - 1. Parkinson's Disease
 - 2. HIV-dementia
 - 3. Activation of Microglia

Loss of striatal TH and GFAP immunoreactivity caused by MPTP is abolished in TNF receptor-deficient mice Wt-Saline DKO-Saline Wt-Saline Wt-MPTP DKO-MPTP DKO-MPTP Tyrosine Hydroxylase GFAP

OK, TNF- α is "Bad" but can suppressed in the periphery by Glucocorticoids

Will Glucocorticoids suppress brain damage and TNF- α in the CNS?

Use minocycline to block microglial activation?

- Broad spectrum tetracycline derivative antibiotic
- Anti-inflammatory properties
- · Reported to block microglial activation
- Reported to block nigral cell loss after (high dose) MPTP

OK...TNF is bad but...not so fast...

Role of TNF- α in Neurodegeneration is *NOT* Simple: F-J Staining is seen in hippocampus of TNF receptor-deficient mice treated with MPTP

A few words from Richard Ransohoff on *in vivo* vs. *in vitro* cytokine data

".....comparisons of *in vitro* studies of explanted CNS cells with *in vivo* date (e.g. in-situ hybridization) show that tissue disruption and cell culture dysregulates the chemokine system. Therefore, it is Perilous to extrapolate the situation *in vivo* from results *in vitro*."

Ubogu, et al., Trends in Pharmacol. Sci. 27: 49, 2006

Some take home messages

- 1. Data exist suggestive of in involvement of dysregulated immune signaling in GWVI
- 2. Neuro-immune and immune-neuro interactions are complex and reciprocal; they pose multiple targets for diagnosis and therapy
- 3. Expanded serum cytokine profiling and immune function tests of GW veterans may aid in revealing the GWI phenotype
- 4. Therapeutics that affect immune signaling in the periphery may not modulate CNS immune signals or they may inappropriately disrupt normal beneficial effects of cytokine signals in the CNS

