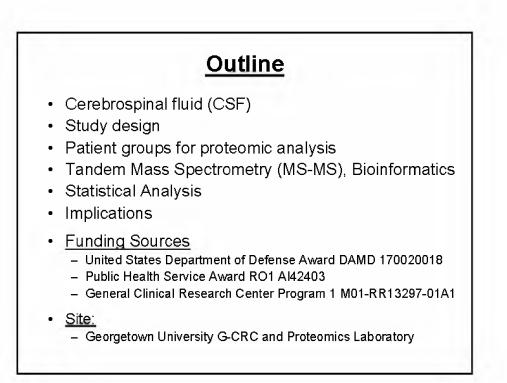
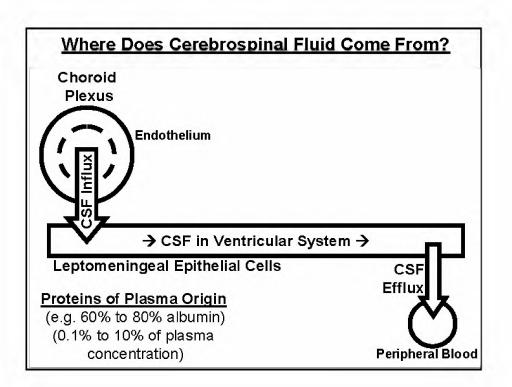
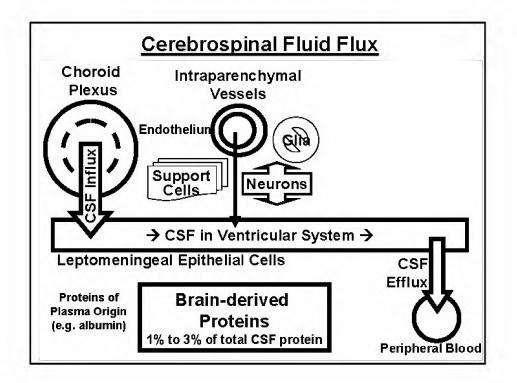
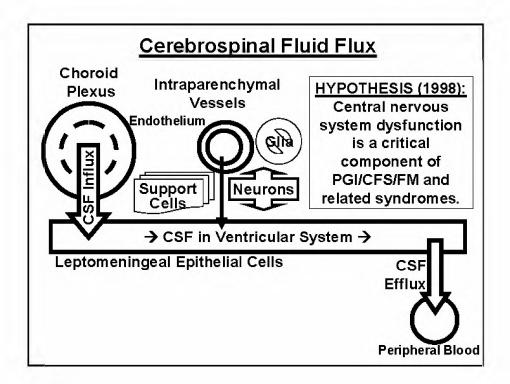
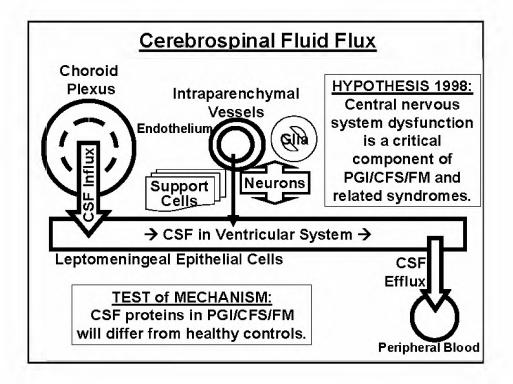
Presentation 9 – James Baraniuk

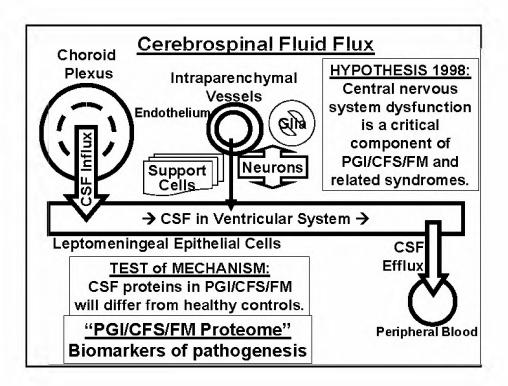

"A Chronic Fatigue Syndrome Related Proteome in Cerebrospinal Fluid"


Baraniuk JN,* Casado B,*§ Maibach H,* Clauw DJ,*† Pannell LK,‡ Hess S.‡


BMC Neurology 5:22, 2005

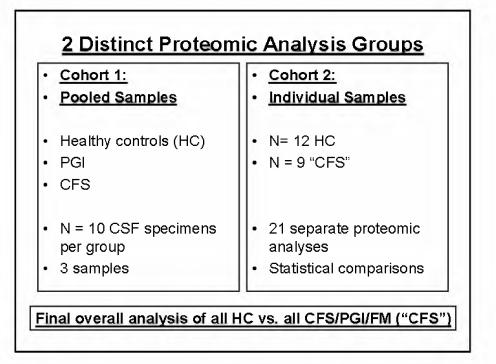

*Georgetown University §Swiss Federal Institute of Technology ⊺University of Michigan ‡NIDDK

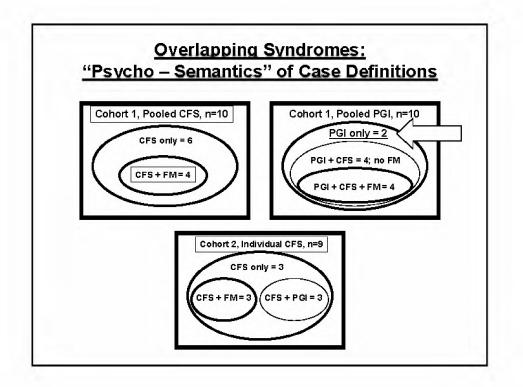

$\underline{DNA} \rightarrow \underline{mRNA} \rightarrow \underline{Protein}$				
Genomics	mRNA Microarrav	Proteomics		
Examine genes in DNA Single point mutations (SNPs)	Examine mRNA expressed at one point in time	Examine the proteins in a cell, tissue, fluid sample		
What you are bom with Potential	mRNA is made into proteins	Proteins determine what is happening now		
Risk Factors	Different expression between "Disease"	Comparison of "Disease" and "Control		
Diathesis	and "Control"	Disease-related set of		
Population Studies	Gene microarrays	proteins or "Proteome"		



Georgetown "CMI" Study; Dan Clauw, Pl

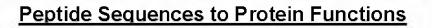
<u>Recruited Subject Groups:</u>


- Veterans with Persian Gulf Illness (PGI, GWI, CMI)
- Fibromvalgia (FM; positive controls, ACR Criteria)
- Healthy controls (HC)


Multidimensional Evaluation:

- Psychiatric, psychometric
- HPA axis, hyperalgesia, fMRI
- Autonomic and exercise responses
- Blood biomarker and lumbar puncture
- Assess for PGI, CFS, FM, MCS, IBS, and other syndromes

- · One anesthetist for reproducible technique
- · Lumbar punctures at same time of the morning
- Narrow gauge (22G) catheters
- Few, mild adverse events (headaches)
- Tubes 2, 3, 4
- · Centrifuged to remove cells
- Aprotinin (antiprotease) added
- Frozen at -80°C


Group	N	Age (yr)	Male	CESD Affective Dysfunction	Pain Threshold (kg)
		COHORT	1 (Poolec	l Samples)	
HC Pool	10	34.4 (29.1 to 39.7)	80%	4.3 (0.6 to 7.9)	7.69 (5.72 to 9.65)
CFS Pool	10	39.9 (34.3 to 45.5)	20% ***	17.6 *** (12.1 to 23.0)	4.01 ** (2.86 to 5.16)
PGI Pool	10	43.5 (38.7 to 48.3)	60%	18.1 ** (8.7 to 27.5)	4.89 * (3.64 to 6.14)
		COHORT	2 (Individu	al Samples)	
нс	12	41.3 (33.6 to 48.9)	75%	1	7.17 (5.71 to 8.64)
CFS	9	39.1 (32.2 to 46.0)	33%		4.97 § (3.75 to 6.19)

Clinical Summary

- CFS / PGI / FM groups had extensive overlap, with only 2 "pure" PGI subjects.
- CFS was the single most common "syndrome" in these subjects.
- CFS / PGI / FM subjects had:
 - Worse QOL (SF-36), fatigue (MFI), and affective dysfunction (CESD)
 - Lower pain thresholds (systemic hyperalgesia)

Proteomics: Proteins → Peptides

- CSF proteins digested into peptides with trypsin
- Trypsin peptides separated by capillary liquid chromatography (<u>CapLC</u>)
- \rightarrow Tandem mass spectrometry (MS-MS)
 - 1st MS: quadrupole MS to separate peptide ions
 - 2nd MS-MS: time-of-flight MS to sequence peptides

- 2nd MS-MS spectra → sequence each peptide
- Peptide sequences → MASCOT software
- MASCOT → protein identification for each sample
- Protein functions and interactions \rightarrow
- Protein Information Resource (PIR)
- <u>http://pir.georgetown.edu</u>

Proteins from Pooled Samples (Cohort 1)

Proteins that were detected in **<u>BOTH</u>** the pooled PGI and pooled CFS specimens

AND

were <u>ABSENT</u> from the pooled healthy control specimen

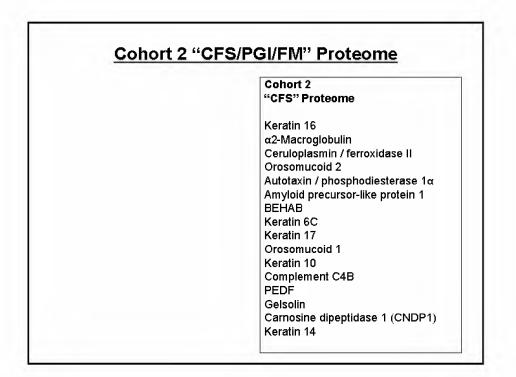
defined the

"Cohort 1 CFS-related Proteome"

Cohort 1 "Pooled CFS" Proteome		
α2-Macroglobulin Ceruloplasmin / ferroxidase II Orosomucoid 2 Autotaxin / phosphodiesterase 1α Amyloid precursor-like protein 1 BEHAB		
Complement C4A, C4B PEDF Gelsolin Carnosine dipeptidase 1 (CNDP1)		

Proteins from Individual Samples (Cohort 2)

- <u>Statistical analysis</u>
- · Lists of proteins from each individual sample
 - Multilogistic analysis and modeling (GLM)
 - Support Vector Machine Learning (SVM-PSO-LOO)
- Identify the unique set of proteins found in CFS/PGI/FM but not healthy controls


Proteins from Individual Samples (Cohort 2)

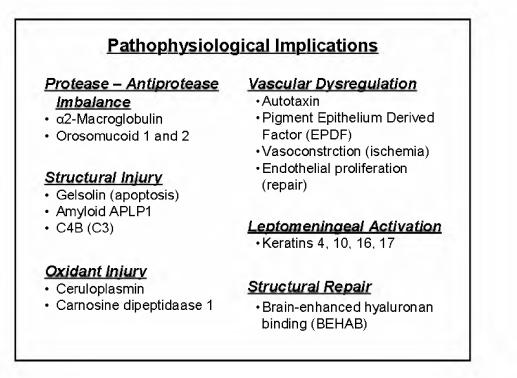
- "Detectability":
 - All proteins detected and identified by 2nd MS-MS.
 - Peptides identified above the lower limits of detection

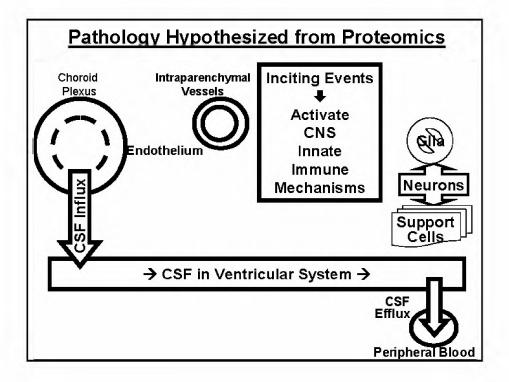
• Frequency of detection:

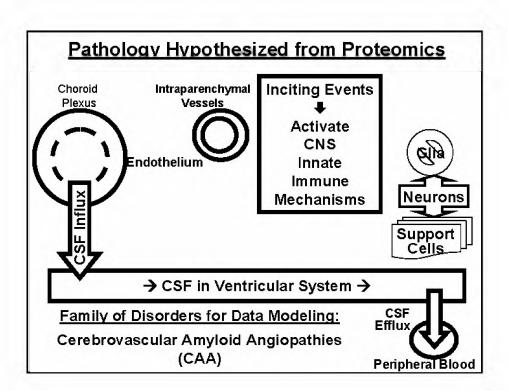
- The frequencies or prevalences of each protein in the healthy control group (HC) and CFS/PGI/FM group.
- Qualitative analysis (ANOVA).
- Proteins detected significantly more frequently in CFS/PGI/FM than HC group formed the:

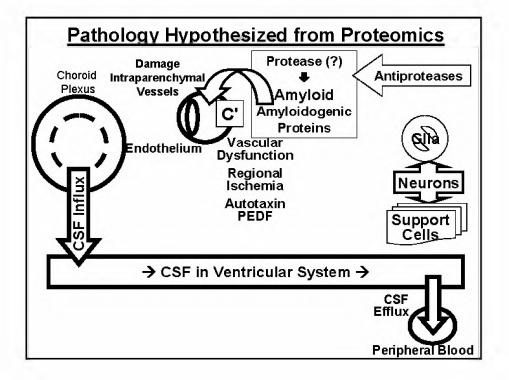
"CFS/PGI/FM related proteome".

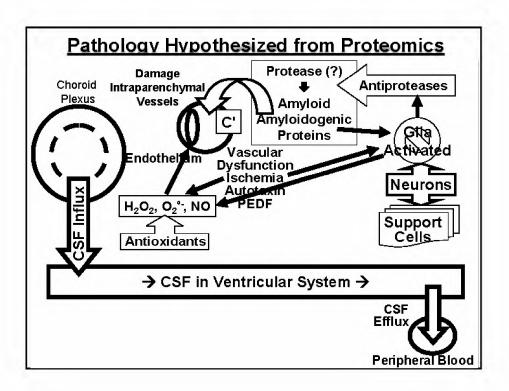
Cohort 1 'Pooled CFS" Proteome	Cohort 2 "CFS" Proteome
	Keratin 16
g2-Macroglobulin	α2-Macroglobulin
Ceruloplasmin / ferroxidase II	Ceruloplasmin / ferroxidase II
Orosomucoid 2	Orosomucoid 2
Autotaxin / phosphodiesterase 1😋 🚽	Autotaxin / phosphodiesterase 10
Amyloid precursor-like protein 1	Amyloid precursor-like protein 1
BEHAB	BEHAB
	Keratin 6C
	Keratin 17
	Orosomucoid 1
	Keratin 10
Complement C4A, C4B	Complement C4B
PEDF	Gelsolin
Gelsolin	Carnosine dipeptidase 1 (CNDP1)
Carnosine dipeptidase 1 (CNDP1)	Kerafin 14
	Keraun 14

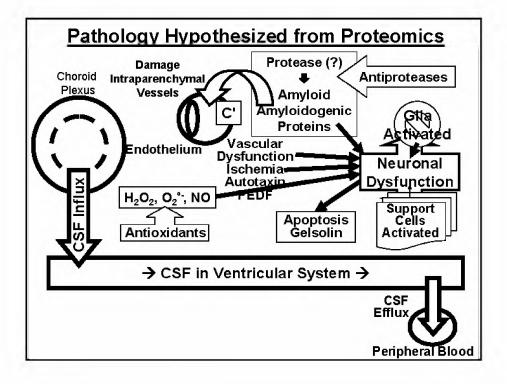

Multilogistic Proteomic Biosignature (B1/5) Model

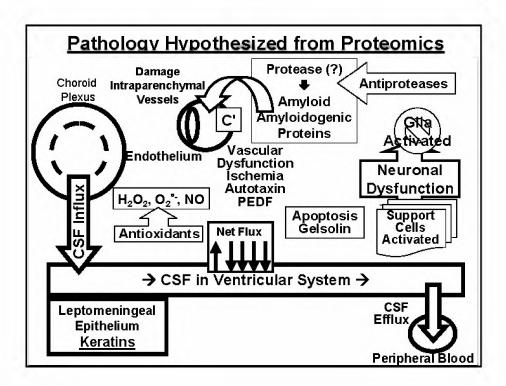

<u>IF</u> any 1 of these 5 proteins was detected: *Keratin 16 a*2-Macroglobulin Orosomucoid 2 Autotaxin / phosphodiesterase 1*a* Pigment Epithelium Derived Factor (PEDF)

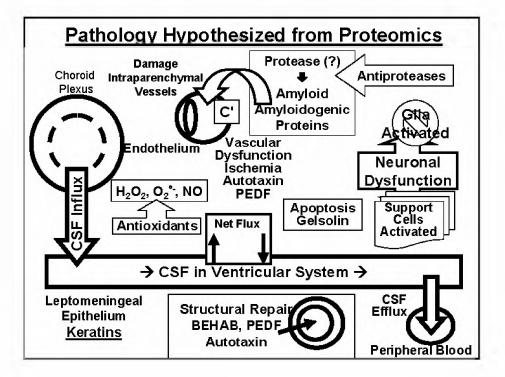

THEN

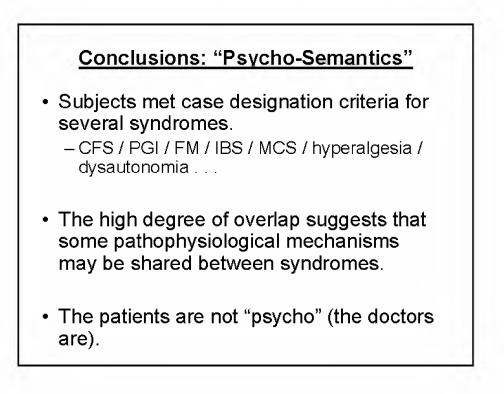

CFS was present with <u>OR=34.5</u> (1.49 to 809.61; p=0.0072, Fisher's Exact test) <u>AND</u> CFS status = gender + (B1/5) 80% concordance

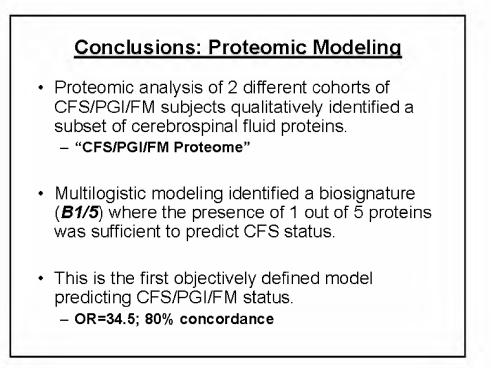

First objectively defined. predictive model for these illnesses.

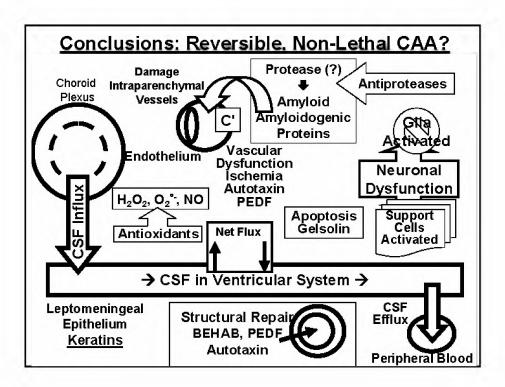












Genomics	mRNA Microarray	Proteomics
•Examine genes in DNA	•Examine mRNA	•Examine the proteins
•Single point mutations	expressed at one	in a cell, tissue, fluid
(SNPs)	point in time	sample
·What you are bom with	•mRNA is made into	 Proteins determine
 Potential 	proteins	what is happening now
 Risk Factors 	 Different expression 	 Comparison of
 Diathesis 	between "Disease"	"Disease" and "Control
 Population Studies 	and "Control"	 Disease-related
	• <u>Gene microarravs</u>	"Proteome"
	Cuen shets of	one point in time.