Appendix

Presentation 1- Maria Araneta

Birth Defects and Pregnancy Outcomes Following Service in the Gulf War

Maria Rosario (Happy) G. Araneta, Ph.D.

October 27, 2003

Meeting of the Research Advisory Committee on Gulf War Veterans' Illnesses

Prevalence of Birth Defects Among Infants of Gulf War Veterans in Arkansas, Arizona, California, Georgia, Hawaii, and Iowa, 1989-1993

Birth Defects Research (Part A): Clinical and Molecular Teratology 2003: 67;246-260

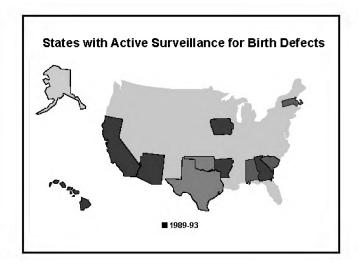
Authors:

Maria Rosario G. Araneta NHRC Karen M. Schlangen NHRC CDC Larry D. Edmonds Daniel A. Destiche Ruth D. Merz Charlotte A. Hobbs Timothy J. Flood NHRC Hawaii Arkansas Arizona John A. Harris Diane Krishnamurti California lowa Gregory C. Gray NHRC

Background

- U.S. General Accounting Office: 21 teratogens and reproductive toxicants present in the GW environment
- · Oil fires and soil:

arsenic benzene benzopyrene
cadmium lead mercury
nickel toluene xylene
di-n-butyl phthalate hexachloroethane pentachlorophenol
hexachlorocyclopentadiene


· Pesticides:

carbaryl diazinon dichlorvos ethanol lindane warfarin

 Decontaminating agents: ethylene glycol monomethyl ether

Previous studies

- Penman, 1996: 2 National Guard units, 5 case infants
- Cowan, 1997: military hospitals, newborn diagnoses only, ICD-9 codes
- Araneta, 1997: Goldenhar syndrome, military hospitals, rare condition
- Goss Gilroy, Inc. 1998: Canada, self-reported, f birth defects among GWV infants
- Kang, 2001: self-reported, not validated against medical records, f birth defects among GWV infants

Active Case Ascertainment for Birth Defects

- 1. Population-based
- · includes military and non-military hospitals
- · births to Reservists and National Guard members
- · births to former military personnel
- 2. Surveillance through infant's 1st birthday
- · Captures 95%-99% of birth defects

Active surveillance of Birth Defects

3. Data abstracted from multiple sources:

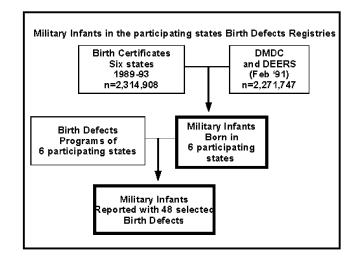
outpatient clinics hosp, cytogenetic laboratories genet cardiac catheterization logs surgi molecular biology laboratories

hospitals genetic clinics surgical logs

- 4. Birth defects recorded by CDC's 6-digit code for Reportable Congenital Anomalies
- 5. Provides more complete case ascertainment and morphologic classification of birth defects

Objectives

- Identify infants born to military personnel between 1989-93 in states with active surveillance of birth defects
- · Measure the prevalence of selected birth defects
- a) GWV and NDV infants
 - prewar conceptions
 - postwar conceptions
- b) GWV infants
 - prewar vs. postwar conceptions


Methods - Data Sources

Military:

- Defense Manpower Data Center (DMDC) military sponsor data
- Defense Eligibility Enrollment Reporting System (DEERS) – spouse, children

Arkansas, Arizona, California, Georgia, Hawaii, Iowa:

- · Vital records birth certificates
- · Birth Defects Programs birth defects data

Anencephalus Spina Bifida Hydrocephalus Encephalocele Microcephalus Aniridia Congenital cataract Anophthalmia/microphthalmia Anotia/microtia Cleft palate Cleft lip

48 Selected Birth Defects (continued)

Common truncus Tetralogy of Fallot
Ventricular septal defect Ebstein's anomaly
Aortic valve stenosis Coarctation of aorta

Pulmonary valve atresia/stenosis
Pulmonary valve insufficiency
Endocardial cushion defect
Pulmonary artery anomalies
Transposition of great arteries
Tricuspid atresia/stenosis
Tricuspid valve insufficiency
Hypoplastic left heart syndrome

48 Selected Birth Defects (continued)

Lung agenesis/hypoplasia Choanal atresia

Pyloric stenosis Hirschsprung disease Biliary atresia Gastroschisis

Diaphragmatic hernia Omphalocele
Hypospadias/epispadias Bladder exstrophy

Renal agenesis/hypoplasia
Obstructive genitourinary defect

Esophageal atresia/tracheoesophageal fistula Rectal/large intestinal atresia/stenosis

48 Selected Birth Defects (continued)

Reduction deformity - upper limbs, lower limbs Trisomy 13 (Patau syndrome) Trisomy 18 (Edward syndrome) Trisomy 21 (Down syndrome)

Fetal alcohol syndrome Amniotic bands

Dextrocardia Chromosomal anomalies
Goldenhar syndrome (oculoauriculovertebral complex)

Estimates of Prewar and Postwar Conceptions

Prewar conceptions:

GWW: Infant's DOB ≤ Mother's deployment date
Infant's DOB - gest. age ≤ Father's deploy date

NDV: Conceived < December 31, 1990

Postwar conceptions:

GWV: Infant's DOB > Mother's deployment date
Infant's DOB - gest. age ≥ Father's return date

NDV: Conceived ≥ January 1, 1991

Table 1. Demographic Characteristics of I	nfants
Born to Women Military Personnel, 198	9-93

	GWV <u>(n=450)</u>	NDV <u>(n=3,966)</u>
Male	48%	50%
Birthweight (gms)	3,351	3,341
Preterm birth (<37 wks)	9%	9%
Maternal age (yrs)	25.3	25.9*
Paternal age (yrs)	27.2	27.5
White	51%	60%*
≤ High school	55%	53%
Unmarried	28%	23%*

*p-value<0.05 (statistically significant)

Demographic Characteristics of Infants Born to Women Military Personnel, 1989-93

	GW/ <u>(n=450)</u>	NDV <u>(n=3,966)</u>
Smoking	7%	9%
Alcohol	1%	1%
Prenatal visits	11.2	11.7*
Army	64%	35%*
Marine Corps	11%	5%*
Reservist/Natl Guard	24%	12%*
Military Officers	8%	11%*

Table 2. Demographic Characteristics of Infants Born to Male Military Personnel, 1989-93

	GWV (n=11,511)	NDV (n=29,086)
Birthweight (gms)	3,367	3,389*
Maternal age (yrs)	25.3	26.0*
Patemal age (yrs)	26.6	27.5*
White (mother)	59%	63%*
≤ High school (mother)	56%	51%*
Unmarried	10%	7%*
Prior live births	0.8	0.9*
Multiple births	1.8	2.4*
*p-value<0.05		

Demographic Characteristics of Infants Born to Male Military Personnel, 1989-93

	GWV	NDV
	(n=450)	(n=3,966)
Marine Corps	28%	11%*
Enlisted personnel	83%	78%*

*p-value<0.05

*p-value<0.05

Table 3. Selected Birth Defects Prevalence* among	1
Prewar conceptions to Women GWVs and NDVs.1989	-91

	GV (n=1	VV 142)	ND' (n=	V 2,007)	RR (95%CI)
Hydrocephalus	1	(70)	2	(10)	7.1 (0.6-79)
VSD	0		11	(55)	
Obstructive					
genitourinary defect	0		6	(30)	
Pyloric stenosis	0		5	(30)	
Hypospadias	0		5	(30)	
Tetralogy of Fallot	0		4	(20)	
Cleft lip w/o c.palate	0		3	(15)	

Table 4. Selected Birth Defects Prevalence* among
Prewar conceptions to Male GWVs and NDVs,1989-91

	_	WV =6,863)	ND' (n=	V 17,922)	RR (95%CI)
Hypospadias	22	(32)	51	(29)	1.1 (0.7 - 1.9)
Pyloric stenosis	14	(20)	25	(14)	1.5 (0.8 - 2.8)
VSD	13	(19)	45	(25)	0.8 (0.4 - 1.4)
Obstructive					
genitourinary defects	9	(13)	29	(16)	0.8 (0.4 - 1.7)
Down syndrome	9	(13)	21	(12)	1.1 (0.5 - 2.5)
Tricuspid valve insufficiency	8	(18)	24	(20)	0.9 (0.4 - 2.0)
Aortic valve stenosis	0		4	(2)	

Table 5. Selected Birth Defects Prevalence* Among Postwar Conceptions to Women GWVs and NDVs,1991-93

		9W∨ =308)	ND (n=	V :1,959)	RR	(95% CI)
Hydrocephalus	1	(32)	1	(5)	6.4	(0.2 - 189)
VSD	1	(32)	7	(36)	0.9	(0.05 - 5.5
Pulm valve atresia	1	(32)	1	(5)	6.4	(0.2 - 189)
Cleft lip	1	(32)	1	(5)	6.4	(0.2 -189)
Hypospadias	4	(130)	4	(20)	6.4	$(1.5 - 27)^{\dagger}$
Renal agenesis	1	(32)	3	(15)	2.1	(0.1 - 18)
Obst genitourinary	1	(32)	8	(41)	0.8	(0.04 - 4.7
Down syndrome	1	(32)	0			

Table 6. Selected Birth Defects Prevalence* Among Postwar Conceptions to Male GWVs and NDVs,1991-93

	GW (n=4	VV 1,648)	ND' (n=	V 11,164)	RR (95%CI)
Hypospadias	15	(32)	35	(31)	1.0 (0.6 - 2)
VSD	10	(21)	36	(32)	0.7 (0.3 - 1)
Tricuspid valve insufficiency**	10	(29)	9	(11)	2.7 (1.1 - 7) [†]
Obst genitourinary	9	(19)	21	(19)	1.0 (0.5 - 2)
Pyloric stenosis	7	(15)	18	(16)	0.9 (0.4 - 2)
Aortic valve stenosis	5	(11)	2	(2)	6.0 (1.2 - 31)‡
Coarctation of aorta	5	(11)	3	(3)	4.0 (0.96-17)
Renal agenesis	5	(11)	5	(4)	2.4 (0.7 -8)

*per 10,000 live births, *** California births excluded, †p=0.039, ‡p=0.026

Table 7.	Selected B	irth Defects	Prevalence ²	Among
Prewar vs. F	ostwar cor	ceptions to	Women GW	Ns,1989-93

		ostwar =308)	Prewar (n=142)		RR (95%CI)	
Hydrocephalus	1	(32)	1	(70)	0.5	(0.03 - 7)
VSD	1	(32)	0			
Pulm valve atresia	1	(32)	0			
Cleft lip	1	(32)	0			
Hypospadias	4	(130)	0			
Renal agenesis	1	(32)	0			
Obst genitourinary	1	(32)	0			
Down syndrome	1	(32)	0			

*per 10,000 live births

Table 8. Selected Birth Defects Prevalence* Among Prewar vs. Postwar conceptions to Male GWVs,1989-93

		stwar I,648)		w ar 6,863)	RR (95%CI)
Hypospadias	15	(32)	22	(32)	1.0 (0.5 - 2)
VSD	10	(21)	13	(19)	1.1 (0.5 - 3)
Tricuspid valve insufficiency**	10	(29)	8	(18)	1.6 (0.6 - 4)
Obst genitourinary	9	(19)	9	(13)	1.5 (0.6 - 4)
Pyloric stenosis	7	(15)	14	(20)	0.7 (0.2 - 2)
Aortic valve stenosis	5	(11)	0		16 (0.9 - 294)†
Coarctation of aorta	5	(11)	1	(2)	7.4 (0.9 -63)
Renal agenesis	5	(11)	0		16 (0.9 - 294)†

* per 10,000 live births; $^\dagger p$ <0.011 logit estimator

Adjusted Prevalence – cardiovascular defects

- † tricuspid valve insufficiency and aortic valve stenosis did not differ when adjusted by:
- State
- · Maternal and paternal age
- Ethnicity
- · Marital Status
- Education
- Parity, multiple births
- Prenatal visits
- · Military branch, rank

Adjusted Prevalence - hypospadias

- † Prevalence of hypospadias persisted after adjustment for:
- · Paternal age
- · Small for gestational age
- · Low birth weight
- · Preeclampsia
- · Low parity

Adjusted Prevalence – renal agenesis or hypoplasia

- Prevalence of renal agenesis/hypoplasia persisted after adjustment for:
- · Prenatal alcohol
- · Intrauterine growth retardation

Conclusions

- Linkage of military and state health department records enables measurement of the prevalence of birth defects among infants:
 - Through infant's 1^{rt}year of life
 - in military and civilian hospitals
 - Reservists and National Guard members
 - former and current military personnel
- Higher prevalence of tricuspid valve insufficiency, aortic valve stenosis, and renal agenesis/hypoplasia in postwar infants of GWV men.

Conclusions

- Higher prevalence of hypospadias among postwar infants of GWV women.
- The etiology of birth defects is unknown for 70% of all birth defects
- We did not have the ability to determine if the excess risk of birth defects was cased by inherited, environmental, or synergistic factors, or was due to chance.

Limitations

- · California: no access to military hospitals
- · Limited to live births
- Birth defects diagnosed after first birthday not included (1% - 5%)
- · Statistical power
- Multiple comparisons

Statistical Power

	Optimum		
Condition	sample size	<u>Available</u>	
Hypospadias	257	154	
Statistical power	80%	67%	
Tricuspid valve insuff.	6373	4648	

Multiple Comparisons

Comparisons	Expected	Observed
Postwar GWV vs ND	V women	
7 birth defects	0.35	1
Postwar GWV vs ND	V men	
26 birth defects	1.3	2
Postwar GWV vs pre	war GWV men	
24 birth defects	1.2	2

Conception and Pregnancy during the Persian Gulf War: The Risk to Women Veterans

Annals of Epidemiology, November 2003

Araneta MRG, Kamens DR, Zau AC, Gastanaga VM, Schlangen KM, Hiliopoulos KM, Gray GC.

Purpose

To characterize reproductive outcomes:

- · Live births
- Stillbirths
- Spontaneous abortions
- Ectopic pregnancies
- Induced abortions among women who were pregnant while deployed to the Gulf War

Methods

- Deployment data + inpatient records (153 military hospitals) were used to identify servicewomen who were:
- pregnant between August 1990 and May 1992
- belonged to UIC deployed to the Gulf War
- Postal surveys in 1997-98 to elicit reproductive history + individual deployment dates
- Validated self-reported outcomes against military hospitalization records

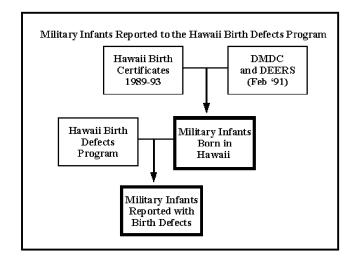
Results

- 3285 women had a pregnancy-related admission in a military hospital
- 1558 completed the questionnaire

Dates of delivery (or fetal loss), weeks of gestation, and individual deployment dates identified:

415 Gulf-war exposed pregnancies 298 GWV postwar conceptions 427 NDV conceptions

Results

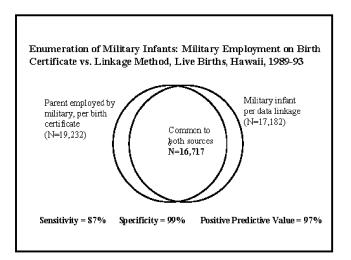

- The prevalence of stillbirths, spontaneous abortions, ectopic pregnancies, and induced abortions were similar among GWV-exposed pregnancies and NDV conceptions.
- Spontaneous abortions were significantly higher among postwar GWV conceptions (22.8%) compared to NDV conceptions (9.1%, adjusted OR: 2.92, 95% CI: 1.9 – 4.6)
- Ectopic pregnancies were significantly higher higher among postwar GWV conceptions (10.7%) compared to NDV conceptions (1.4%, adjusted OR: 7.7, 95% Cl: 3.0 - 20)

Conclusions

- Among women veterans who belonged to units that were deployed to the Gulf War:
- GWV-exposed conceptions and nondeployed conceptions had similar reproductive outcomes.
- However, GWV postwar conceptions were at increased risk for ectopic pregnancies and spontaneous abortions

Selection of Hawaii for Pilot Site

- · Large military population
 - 20% of births have a military parent
- Same genetic referral site for military and civilian hospitals
- · Parental SSN on birth certificate
- · Military employment on birth certificate



How to improve statistical power? How to reduce multiple comparisons?

	GWV n=4,956)	NDV (n=13,123)	RR (95%CI)
Tricuspid valve insufficiency**	10 (27)	10 (10)	2.6 (1.1 – 6.4) [†]
Aortic valve stenosis	5 (10)	2 (1.5)	6.6 (1.4 - 45)‡
Coarctation of aorta	5 (10)	3 (2)	4.4 (1.1 - 21)§

*per 10,000 live births, ** California births excluded, †p=0.023, ‡p=0.019, §p=0.04

27 comparisons, expect 5% (1.4) to differ due to chance, observe differences in 3

