Gut Microbiome in GWI, An unstable Resistome and Targeted Therapeutics

Dr. Saurabh Chatterjee

Associate Professor,

Department of Environmental Health Sciences and

Department of Pathology, Microbiology and Immunology, School of Medicine

Meeting of the Research Advisory Committee on Gulf War Veterans' Illness March 10th, 2021

- **2. Drug Discovery: Gut microbiome targeted therapeutics.**
- **3. Modelling susceptibility to disease in underlying GWI:**
- Rising to future challenges.
- Obesity.
- Infectious Disease.
- Metabolic Syndrome.
- Mechanisms of Susceptibility (Resistome).

U.S. Department

of Veterans Affairs

Bacteriome Analysis in Gulf War Veterans

U.S. Department of Veterans Affairs

Gut Inflammation Axis in GWI Veterans

Role of sTNFα-R1 in various pathophysiology:

- Interaction of TNFα with sTNFα-R1 leads to hepatic stellate cell activation, leading to liver fibrosis.
- Targeted therapy against sTNFα-R1 signaling slows neuronal loss and amyloid beta generation in a mouse model of Alzheimer's disease.
- Increased circulatory level of sTNFα-R1 is often associated with various kidney diseases and disease progression.

Bench to Bedside Translating Lab Studies to Therapeutics

Disease Laborator

- Intestinal Inflammation
- Traveller's Diarrhoea
- Irritable Bowel
 Syndrome
- Ulcerative colitis
- Obesity
- Neurocognition

U.S. Department of Veterans Affairs

Butyrate level in GWI veterans

✤ 18 weeks clinical trial.

2

- Primary outcome VSF36 & CVLT-II.
- Secondary Fatigue/Pain/Bowel Symptom Score.
- * Mechanistic Intestinal Permeability.
 - Bacteriome Virome Analysis.
 - CNS auto antibodies and its relationship with gut bacteriome/

virome

Targeted Therapeutics for Virome in Gulf War Veterans Chatterjee Lab findings

U.S. Department of Veterans Affairs

Gut Bacteriome in GWI veterans (GWIC/BBRAIN cohorts)

Ribavirin: FDA approved antiviral formulation Widely used since 1990s **Broad spectrum effects** Safety issues persist that include hemolysis Phase-1 clinical trial in GWI veterans can be proposed with Ribavirin and Vitamin E as a combination therapy Andrographolide : Not FDA approved antiviral, analgesic, antipyretic, formulation Phase-I Widely used since centuries **Broadspectrum effects** required No toxicity data in clinical trials **FDA IND required** Phase-1 clinical trial in GWI veterans can be proposed with Andrographolide

Repurposed Therapy

study

Ribavirin 200 mg

Role of TNFR1 and IL6 in Gulf War Illness and possible drug candidates (Chatterjee Lab)

U.S. Department of Veterans Affairs

Infliximab

Chatterjee Lab clinical and

preclinical data

International Journal of **Environmental Research** and Public Health

Submit to this Journal

Review for this Journal

viruses

Submit to this Journal

Review for this Journal

Edit a Special Issue

Article Menu

Edit a Special Issue

Article Menu

Open Access Article

The Gut-Microbiome in Gulf War Veterans: A **Preliminary Report**

by 🕐 Patricia A. Janulewicz ^{1,*} 🖾 📢 Ratanesh K. Seth ², 📢 Jeffrey M. Carlson ¹, 📢 Joy Ajama ¹, 📢 Emily Quinn ³, 🚺 Timothy Heeren ⁴, 🚺 Nancy Klimas ⁵, 🚺 Steven M. Lasley ⁶, 🚺 Ronnie D. Horner ⁷, 🚺 Kimberly Sullivan ^{1,†} and Saurabh Chatteriee^{2,†}

TNFR1 is associated with GWI in veterans

Tocilizumab

Tocilizumah 20mg/ml

80 mg / 4 ml

1 vial of 20 ml at concretisite for

tobation for infusion

Open Access Article

Gut DNA Virome Diversity and Its Association with Host **Bacteria Regulate Inflammatory Phenotype and** Neuronal Immunotoxicity in Experimental Gulf War Illness

by 🔃 Ratanesh K. Seth ¹ 🖾 🕑, 🕕 Rabia Maqsood ², 🔍 Ayan Mondal ¹ 🖾, 🕕 Dipro Bose ¹, 📢 Diana Kimono ¹, LaRinda A. Holland², O Patricia Janulewicz Lloyd³ [∞], O Nancy Klimas⁴ [∞], O Ronnie D. Horner⁵ [∞], Kimberly Sullivan³ [∞] [∞], Efrem S. Lim^{2,*} [∞] [∞] [∞] and O Saurabh Chatterjee^{1,6,*} [∞]

IL6 is associated with GWI Neuropathology in mouse models of GWI

Difference in MGEs

Susceptibility to acquired infection: Sepsis, Cytokine storm.
 Susceptibility to altered immune complication: COVID 19,Nosocomial infections.

3. Susceptibility to altered metabolic complications: IBD, NAFLD.

Possible Therapeutic Targeting of the Altered Resistome

Fecal Microbiota Transplant

1. Fecal Microbiota Transfer

2. Treatment with Probiotics e.g. *Bifidobacterium longum*

3. Restrict antibiotic use identified in the resistome

U.S. Department of Veterans Affairs

- **1. Chatterjee Lab has identified bacteriome and virome characteristics in both rodent models and Veterans of GWI**
- **2. Chatterjee Lab has extensively studied the role of pattern recognition receptors (TLR4s and HMGB1) in Gut Brain Axis**
- 3. Chatterjee Lab studies showed a distinct role of TNFR1 and IL6 in modulating Gut Brain Axis of GWI (Infliximab and Tocilizumab can be good candidates)
- 4. Currently we have identified two plant derived compounds that target the TLR4 and TLR7 (Sparstolonin B, Andrographolide)
- 5. We have identified another potential drug target (Resistome)
- 6. Resistome is particularly important since GWI veterans are aging and the characterization of Resistome can answer their susceptibilities to future diseases.

ACKNOWLEDGEMENTS

U.S. Department of Veterans Affairs

Chatterjee Lab Post-docs & Ph.D. Students

Dr. Ratanesh Seth

Dr. Ayan Mondal

U.S. Department

of Veterans Affairs

Dr. Somdatta Chatterjee

Funding:

Department of Veterans Affairs VA Merit Award I01CX001923-01 to Saurabh Chatterjee.

NCCIH/NIH grant 2P01AT003961-06A1 (Project-4) to Saurabh Chatterjee.

DoD-IIRFA grant, W81XWH1810374, PI: Saurabh Chatterjee.

Dipro Bose

- Dr. Nancy Klimas, Nova Southeastern U and Miami VA Medical Center.
- Dr. Ashok Shetty, TAMU.
- Dr. Efrem Lim, ASU.
- Dr. Jie Li, UofSC.
- Dr. Kimberly Sullivan, Patricia Janulewicz, (BBRAIN) Dept. of Environmental Health, Boston University School of Public Health.

